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Microwave heating of materials with impurities
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Abstract. The microwave heating of materials is important in many industrial processes. For example, it is used for
the smelting of metals and the sintering of ceramics. Hot-spots (localised areas of high temperature) can develop in
the material being heated or in the microwave oven itself, with disastrous consequences. Impurities in the material
or in a component of the microwave oven can have different electromagnetic and thermal properties to the
surrounding material. Different rates of heating occur at these sites, which gives rise to differential heating, which
can lead to the generation of hot-spots. The generation of hot-spots by this mechanism is considered for a finite
one-dimensional slab with a single impurity at its centre. A fixed-temperature boundary condition is applied at both
ends of the slab and one end of the slab is irradiated by microwaves of constant amplitude. The heat absorption at
the impurity is assumed to have a power-law dependence on temperature (hence hot-spot generation can occur via
thermal runaway). Depending on the electrical and thermal properties of the material there are two possibilities;
either a hot-spot occurs or a steady-state solution occurs due to a balance between heat absorption in the material
and heat loss through the boundaries. These steady-state solutions are found for both linear and non-linear thermal
absorptivity and constant and decaying electric-field amplitude. If possible the region of parameter space in which
they occur (in the rest of the parameter space hot-spots occur) is also found. In addition, numerical solutions are
developed to verify the steady-state solutions and to investigate cases where analytical solutions are difficult to
derive, such as for materials with multiple impurities.

1. Introduction

There is presently considerable interest in the use of microwave radiation for heating in
industrial processes such as drying, smelting, sintering, melting and sterilizing. The equations
governing the microwave heating of a material can be shown to consist of the damped wave
equation which governs the propagation of microwave radiation through the material and the
forced heat equation which governs the resultant heat generation and flow. The forcing term
in the heat equation is proportional to the square of the amplitude of the microwave field
(Metaxas and Meredith [1]). In general, the properties of the material, such as electrical
conductivity, electrical permittivity, magnetic permeability and thermal absorptivity are all
temperature dependent, so that the equations are non-linearly coupled and therefore difficult 
to solve analytically. One phenomenon which is of particular interest is the generation of
hot-spots, which results from temperature-dependent material properties. A hot-spot is a
region which is much hotter than its surrounding, this phenomenon being both beneficial
(smelting of metals) or harmful (baking of ceramics) to industrial microwave processes.

There have been two main approaches in the mathematical study of microwave heating. If
the electromagnetic effects are of interest it is usually assumed that the material properties
vary slowly with temperature, so that a perturbation solution may be found for both the
electric field and the temperature. Kriegsmann et al. [2], Kriegsmann [3], Pincombe and
Smyth [4], Smyth [5] and Marchant and Pincombe [6] have all used this approach.
Alternatively, if the thermal aspects are isolated, as is frequently done in the study of
hot-spots, then the electric-field amplitude is assumed constant and the forced heat equation
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T, = vT,, + (T), (1.1)

considered, where y(T) is the temperature dependent rate of microwave absorption by the

material (the thermal absorptivity) and the constant electric-field amplitude is normalised to

unity. Roussy et al. [7] numerically solve (1.1) for a cylindrical body with the thermal

absorptivity dependent on a quadratic function of temperature,

y = o + yT + y,2 T2, (1.2)

and a convective heat-loss boundary condition. Brodwin et al. [8] found steady-state

solutions of (1.1) with the thermal absorptivity exponentially dependent on temperature,

Y = Y0 eT , (1.3)

with convective and radiative heat-loss boundary conditions. They found that the steady-

state temperature as a function of incident microwave power is an S-shaped curve. Hence

beyond a certain critical power, a stable high temperature solution exists, i.e. a hot-spot.

Coleman [9] considered a power-law dependency of the form

= %o(l + y1 T)Y2, (1.4)

and found that thermal runaway (an infinite temperature in finite time) occurs if y, > 0,

T2 > 1 and there is no diffusion (v = 0). Hill and Smyth [10] considered (1.1) and (1.3) for
planar, cylindrical and spherical geometries with a fixed-temperature boundary condition and

found steady-state solutions. They assumed that in the regions of parameter space where

steady-state solutions do not occur, the hot-spots occur (in fact thermal runaway occurs due

to the exponential thermal absorptivity). Also, for some parameter values, two steady-state

solutions exist, with the higher temperature profile unstable and the lower temperature

profile stable. Smyth [11] extends Hill and Smyth [10] to include temperature-dependent

thermal diffusivity and constant electrical conductivity (which causes exponential decay of

the electric-field amplitude). Again, steady-state solutions occur and it is reported that large

electrical conductivity can prevent the occurrence of hot-spots. Hill and Jennings [12] analyse

the experimental data collected for various materials to find simple analytical forms for the

variation of thermal absorptivity with temperature. They find that in general, the thermal

absorptivity increases with temperature. However, the thermal absorptivity can also decrease

with temperature over a limited temperature range. In particular, they found linear,

quadratic and exponential dependencies are valid for many materials.

Experimentally, it is found that hot-spots not only occur randomly in a material, but at an

interface or join. For example, a hot-spot can occur between two sections of a microwave

oven or waveguide held together with glue. This occurs because the glue has a higher

thermal absorptivity than its surrounds; consequently differential heating can result in the

generation of a hot-spot. Another example is that of microwave joining of polymers. An

adhesive is used at the site to be joined, which is then cured using microwave radiation.

Hot-spots can then occur at the join site during the heating process as the thermal

absorptivity of the adhesive is higher than that of the base polymer. In the present work,

generation of hot-spots by the mechanism of an impurity with a higher thermal absorptivity

than the surrounding material is examined. A thermal absorptivity of the form

y = y0 + (y, + y2 T 3 )5(x), (1.5)
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is assumed, where 6(x) is a Dirac-delta function. This represents a material of constant
thermal absorptivity with an impurity at x = 0. At the impurity there is a source of additional
temperature-dependent thermal absorptivity. As mentioned, Hill and Jennings [12] find that
a power-law description for the thermal absorptivity is valid for many materials, in
particular, linear and quadratic (y3 = 1 or 3 = 2) power-laws fit the experimental data well.
Here, only materials with thermal absorptivity increasing with temperature are considered,
hence all the coefficients ('0, 3Y, 2 and y3 ) in (1.5) are positive.

A finite one-dimensional slab is considered with an impurity of the form (1.5) at its centre.
At both ends of the slab a fixed-temperature boundary condition is applied. In a certain
region of parameter space steady-state solutions occur as the heat absorption is balanced by
heat loss through the boundaries; outside this region of parameter space hot-spots will occur.
The electric-field amplitude (the heat absorption is proportional to the square of the
amplitude) decays as the microwave radiation propagates through the slab, as a balance
exists between energy lost from the electric field and the heat absorbed by the material.
Hence, as the heat absorption is temperature dependent, so is the electric-field amplitude. In
Sections 3 and 4 the electric-field amplitude is assumed constant (see Roussy et al. [7],
Brodwin et al. [8], Coleman [9] and Hill and Smyth [10] for other microwave heating
problems where this assumption is used). While this assumption is valid for very short slabs
only (as the decay of the electric-field amplitude is small) it leads to a simple model of heat
absorption and diffusion which allows hot-spot generation to be examined. In Section 3
linear thermal absorptivity is considered (y3 = 1). A long-time asymptotic solution is derived,
using the Laplace transform, which shows steady-state, linearly-increasing and exponentially-
increasing solutions. In Section 4 materials with non-linear thermal absorptivity are
considered with steady-state solutions found. The temperature at the impurity is the solution
of a transcendental equation, which is solved to obtain explicit steady-state solutions and
conditions for hot-spot generation for some special choices of y3 . In the appendix the explicit
solutions of the transcendental equation obtained in Section 4 are found graphically. Also, in
the appendix are additional explicit steady-state solutions, of more complicated form, along
with a condition for hot-spot generation for arbitrary y3. In Section 5 steady-state solutions
are found for nonlinear thermal absorptivity and decaying electric-field amplitude. As the
electric-field amplitude depends on the temperature these solutions incorporate the inter-
action between the electric-field amplitude and the temperature. In Section 6 a numerical
scheme is developed which is used to verify the analytical solutions. Also, a numerical
solution is presented for a case for which an analytical solution is not easily derived, a slab
with multiple impurities.

2. Governing equations

The equations governing the propagation of microwave radiation in a dielectric material are
Maxwell's equations. In the case where the electrical permittivity e, the magnetic permeabili-
ty pt and the electrical conductivity are all slowly-varying functions of temperature,
Maxwell's equations reduce to a damped wave equation of the form

Et, + o(T)Et = c2 (T)Exx, (2.1)

(see Pincombe and Smyth [4]). As the microwave radiation propagates through the material,
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it is damped due to the conductivity a. Assuming that all the energy lost by the microwave
radiation is converted into heat, the absorption and diffusion of heat in the material is
governed by the forced heat equation

T, = vTx + y(x, T)E 12, (2.2)

where El is the amplitude of the electric field, y is the temperature-dependent thermal
absorptivity and v is the thermal diffusivity. A one-dimensional slab of finite length
(x E [-1, 1]) is considered with initial and boundary conditions

E(-1, t) = e-'' , E(x, 0) = T(+1, t) = T(x, 0) = 0, (2.3)

The boundary conditions indicate that microwave radiation of constant amplitude unity and
frequency w is incident upon the boundary x = -1. A fixed-temperature boundary condition
is applied at the ends of the slab (with the temperature normalised to zero). Initially, there is
no electric field present in the material and the temperature is the constant ambient value
(which is normalised to zero). It is assumed that the electric field is fully transmitted at both
material boundaries with no reflection. The fixed-temperature boundary condition (2.3)
applies in the large Biot-number limit. The Biot-number measures the relative effects of heat
convection or radiation to heat diffusion. Hence, the fixed-temperature boundary condition
(2.3) applies if the heat loss from the slab is significant with the slab's boundaries quickly
cooled to the ambient temperature.

It is not possible to find an analytic solution to (2.1) and (2.2) with boundary and initial
conditions (2.3) for general electrical conductivity, wavespeed and thermal absorptivity. By
assuming particular forms for the material properties and that the frequency of the incident
radiation is large, however, it is possible to find an analytic expression for the electric-field
amplitude, which reduces the problem to that of finding a solution to the forced heat
equation (2.2) subject to appropriate initial and boundary conditions.

It is assumed that the wavespeed is constant and that the thermal absorptivity is given by
(1.5). This represents a base material with constant thermal absorptivity and an impurity at
x = 0, where there is a source of additional temperature-dependent thermal absorptivity. For
constant wavespeed, the thermal absorptivity must be proportional to the electrical
conductivity so a balance is achieved between energy loss from the microwave radiation and
heat absorption by the material. Hence, the electrical conductivity is

ar = a((yo + (y, + y2 T3)8(x)), (2.4)

where a is a constant of proportionality. To enable an expression for the electric-field
amplitude to be derived the frequency of the microwave radiation is assumed large and a
geometric optics expansion is performed (see Marchant and Pincombe [6] or Smyth [5]). The
form

E = +(X, t) eio ° + O(t-'), o > 1, (2.5)

is assumed for the electric field, where the phase function 0 represents the fast oscillations of
the wavetrain while the amplitude k is modulated by slow variations only. Expansion (2.5) is
substituted into (2.1) and expanded in powers of w. The transport equation

, + Cx =- 2 ' (2.6)
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results at O(w) in the expansion. Equation (2.6) governs the evolution of the leading order
amplitude A. Solving (2.6) with electrical conductivity (2.4) by the method of characteristics
gives

= exp[- (y(x + 1) + gu(x) u(ct-x-1) where g = + 2 T3(O, t - x/c), (2.7)

as the leading order electric-field amplitude (u is the unit step function and a is a constant).
Initially, the electric-field amplitude in the slab is zero; as the characteristic speed is c it takes
time t = 2/c for the whole slab to be irradiated by the microwave radiation. As the
characteristic speed is large (c > 1), this transient effect can be ignored as the timescale over
which it occurs is much shorter than the timescale over which heat diffusion and absorption
occurs. Assuming c > 1 in (2.7) gives

> = exp[- - (y 0(x + 1) + gu(x))] where g = y, + y2T3(0, t), (2.8)

as the electric-field amplitude. If no impurity is present in the material (hence g = 0) the
electric-field amplitude decays exponentially with decay rate ayo/2. With the impurity
present, the solution in the region between the incident boundary (at x = -1) and the
impurity (at x = 0) is the same as if the electrical conductivity was constant (as the
characteristic speed, c, is positive the impurity cannot affect the electric-field amplitude in
the region x < 0). At the impurity the electric-field amplitude is discontinuous; the electric
field amplitude is reduced by a factor of e- ag/2 due to the temperature-dependent electrical
conductivity located there. Hence, the electric-field amplitude is reduced in the region x > 0
as the temperature increases. In the region x > 0 the electric-field amplitude continues to
decay exponentially with decay rate ay,/2. With the form (2.8) for the electric-field
amplitude the forced heat equation (2.2) becomes

T, = Txx + y(x, T) e- (Yo(x+l)+ g u(x)), (2.9)

where y is given by (1.5), g by (2.8) and the thermal diffusivity is normalised to unity.
Hence, the total rate of heat absorption in the slab (the forcing term in (2.9)) is dependent
on both the thermal absorptivity, which increases with temperature, and the electric-field
amplitude, which decreases with temperature in the region x > 0 (in the region x < 0 it is
independent of temperature).

An alternative formulation for (2.9) is to consider the relevant forced heat equation either
side of the impurity

T = Txx+ yo e- o(x+l), x<, T = Tx + yo e-(Y(x+l)+g) , x >O, (2.10)

supplemented by a jump condition, which is the integral of (2.9) over the impurity

Tx(x = O+)- T(x = 0-)=-g2e-" Yo(+e-"g), where g = y,+ y2T3(x=O), (2.11)

where the electric-field amplitude at the impurity is taken as the average of the amplitudes
either side of the impurity. The appropriate initial and boundary conditions are

T(X, 0) = A_ 1, O = 0 (2.12)
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3. Long-time asymptotic solutions for linear thermal absorptivity

In this section it is assumed that the slab is thin, or that the electric conductivity is small so
that the variation of the electric-field amplitude over the slab can be ignored (hence a = 0).
In addition the thermal absorptivity is assumed to vary linearly with temperature (hence
y,3 = 1). These two assumptions enable a simple model equation involving heat absorption
and diffusion to be obtained, which enables some basic features of microwave heating and
hot-spot generation to be illustrated. In particular, the model shows that over a certain
parameter range a balance occurs between heat absorption in the material and heat loss
through the boundaries, leading to a steady-state solution. Outside this parameter range
hot-spots occur.

With the electric-field amplitude constant both of (2.10) are the same, hence the
temperature profile is symmetric. Hence, the forced heat equation

T = Txx + y0 , (3.1)

needs to be considered only in the domain x E [0, 1]. (3.1) is subject to initial and boundary
conditions

2T(O, t)x + y2T(O, t) = y , T(1, t) = T(x, 0) = 0. (3.2)

The first of (3.2) represents the heat flow into the slab from the impurity while the second of
(3.2) states that the temperature at the boundary is constant and the initial temperature is
uniform (both normalised to zero). The solution to (3.1) and (3.2) can be found as an
infinite series using the Laplace-transform or Fourier-series method. For example, Haber-
man [13, Section 5.8] derives details of a related problem using the Fourier-series methods.
Here the Laplace-transform method is used to derive the solution. The Laplace transform is
defined by

T(x, s) = e-s'T(x, t) dt, (3.3)

and after the transformation (3.1) becomes

_~ - o
s

subject to

2TX(0) + 2 T(O) = Y, T(1) = 0. (3.4)S

The solution to (3.4) is

T= sinhvs(1 -xJ) + (1 -cosh/(l - Ixl))
sD(s) s

y(2 sinhv + y2(1 - coshV))
s2D(s)

where
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D(s) = 2vs cosh-V - y2 sinh . (3.5)

Solution (3.5) is valid over the whole slab x E [-1, 1]. It appears as though (3.5) diverges as
s-- c, however writing T in terms of exponentials gives

y- (s + Y2 - (2 + Y2) e-/) e(1-ll) y (sy 1+ 2 + (2V - y-2 ) e ) e- +(1 - l)

s 2 ((2V - 2 ) ea + (2Vx + y2 ) e-) s 2 ((2V - y2 ) e + (2V + y2 ) e- A) s

(3.6)

It can now be seen that T--> 0 as s x (which implies T = 0 at time t = 0 as required). The
form (3.5) is used to find the long-term behaviour though, due to its simpler form. The
solution to (3.1) and (3.2) is obtained using the transformed solution T derived above. The
inverse Laplace transform is given by

T = 2 1 f+ T es' ds, (3.7)

where a must be chosen so that the path of integration is to the right of any singularities. The
integral can be performed directly by summing the residues of the poles of T. The solution is
found as an infinite series; each term in the series is the residue of a pole with the residues
being calculated in descending order in size of the real part of the pole. The residues of the
poles with the largest real parts (the real part of the pole represents the exponential growth
or decay rate in the solution) represent the most important contributions to the solution at
long times, hence the first terms of the series represents an approximation to the solution at
long times. For y2 = 0 all the terms of the infinite series are found, while for y2 0 only the
first term of the series is found to get an approximation valid for a long time.
(a) 2 = 0
The transform (3.5) with y2 = 0 is

T ~3/ + Yo si sinh s (l - Ix l ) + O (1 - cosh/A(1 - Ixl)) , (3.8)

n=0 (2n + 1) 2 )

where the product form of coshVs has been used to write T in terms of its poles. All the
poles of (3.8) are real with the largest at s = 0 and the rest of the poles negative. Hence, the
simple pole at s = 0 represents steady terms while the other poles represent exponentially
decaying terms. Summing the residues of the poles of (3.8) gives

T= ( + Y)(l - xJ) _ YO (1- xl)2

1 - ( -1) +1

3 n) 4( 1 (n+ )3) sin((n + )(1 I- l)) e 2 , (3.9)

which represents a steady-state solution plus an infinite sum of transients. The temperature
evolves to a steady-state parabolic profile as the heat absorbed by the material is balanced by
heat loss through the boundaries.

(b) '2>0
In this case D(s), the denominator of (3.5), cannot be exactly written as a product of its
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zeros (which are all real). The largest zero of D(s) is considered to enable an approximation
valid at long times to be derived. Three qualitatively different solutions exist depending on
the value of y2.
(i) O<y 2 <2
In this case D(s) has no positive zeros, so all the poles of (3.5) are either zero or negative.
Let D(s) = VsF(s) where F(s) only has negative zeros (so it represents the transient decay
terms). The transform (3.5) becomes

_ sinh/(1 - xli) 3/0 (2x sinhxV + y2 (1 - coshV)) sinh(1 - xi)
3/2 s) 5/2 F(s)

+ 2 (1 - coshV(1 - Ixl) . (3.10)
S

The residue of the simple pole at s = 0 gives

(2y + 4y - Y2Y 0) ( 1 (1- xl) + O(e ), (3.11)

where a is the decay rate of the largest transient. The temperature evolves towards a
steady-state parabolic profile as in the case of y2 = 0. Figure 1 shows the temperature T
versus x for y = 0.1 + (0.3 + 0.3T)8(x) and t = 10. Compared are (3.11) and the numerical
solution (6.2) ( ). There is an excellent comparison between the curves. There is a
maximum in the temperature profile at x = 0 as there is less heat loss from the centre of the
slab than from near the boundaries and as there is more heat being absorbed at the impurity.
The heat absorption is balanced by heat loss through the boundaries, so a steady-state
solution results.
(ii) 2 >2

(:

0-

L2.

.0

X
Fig. 1. Temperature T versus x for y = 0.1 + (0.3 + 0.3T)8(x), t = 10 and a fixed temperature boundary condition.
Compared are the asymptotic theory (3.11) and the numerical solution (6.2) ( ).
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In this case D(s) has one positive zero; hence (3.5) has one positive pole. Let D(s)=
(s - r )F(s) where r is the positive zero and F(s) has only non-positive zeros which represent
the transients. So (3.5) becomes

y, sinhV(1 - Ixl) yo (2vs sinhV/ + y2 (1 - coshV)) sinhV(1 - xi)
s (s - r)F(s) s2 (s - r,)F(s)

+ (1 - cosh(1 - Ixl)) · (3.12)
S

Summing the residues of the simple pole at s = r gives

, + Yo (2r/2 sinh r/2 + y2(1 - cosh r2))
T sinh r'/2(1 - lxi) er" + 0(1) (3.13)/ Y2 , 1/2 1/2 r(1 - 22 )cosh r 2 - r2 sinh r'2

Here the heat absorbed by the material cannot be balanced by heat loss at the boundaries
and consequently the dominant term in (3.13) increases exponentially. The zero r, can be
found by solving for the zeros of D(s) numerically (by Newton's method for example).

(iii) y2 =2
In this case D(s) has no positive zeros, so the poles of (3.5) are either zero or negative. Let
D(s) = s3 '2F(s) where F(s) has only negative zeros. The transform (3.5) becomes

y1 sinh(1 - Ixl) 1y
T =s- F(s) +° (1 - cosh/(1 - Ixl))

s/2 F(s)

+ y (2Vsi sinhVs + y2 (1 - coshVs))
+ 7/2 F(s) sinh/(1- Ix|) . (3.14)

s F(s)

Summing the residue of the double pole at s = 0 gives

3
T= 3t(T + )(1- Ix|) + 0(1). (3.15)

In this case the dominant term represents a triangular temperature profile which increases
linearly with time.

In summary, the rate of change of heat absorption with temperature, y2 , is the parameter
which determines the qualitative form of the solution. For 2

< 2 a balance between heat
absorption by the material and heat loss through the boundaries occurs and a steady-state
solution results, while for y2 - 2 a hot-spot results. For y2 >2 the temperature increases
exponentially with time, while y2 = 2 is a transition case where a linear increase in
temperature with time occurs.

4. Steady-state solutions for non-linear thermal absorptivity

4.1. The general solution and its stability

In Section 3 long-time asymptotic solutions are developed for a finite-one dimensional slab
with an impurity which has linear thermal absorptivity and constant electric-field amplitude.
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Here, non-linear thermal absorptivity of the form (1.5) is considered with the electric-field
amplitude again constant. Thus, the heat absorption and diffusion are described by (2.8)
with the electrical-field amplitude constant (a = 0). As in Section 3 the temperature profile is
symmetric, hence the forced heat equation (3.1) is considered on the domain x E [0, 1]
subject to the initial and boundary conditions

2Tx(0, t) + y2T3(0, t) = - , T(1, t)= T(x, ) = . (4.1)

In general, (4.1) is non-linear (except for y3 = 0, y2 = 0 or 3 = 1) so the Laplace-transform
method of Section 3 is inapplicable. Section 3 showed that for a fixed-temperature boundary
condition, steady-state solutions are possible as the heat absorption in the material is
balanced by the heat loss through the boundaries (for y3 = 1 steady-state solutions occur for
2 < 2). To find steady-state solutions of (3.1), take T,= 0, integrate and apply the fixed-

temperature boundary condition (the second of (4.1)), which gives

T = a - (a - 2) JXJ _ ° X2, (4.2)

where a is a constant. Note that the solution is valid over the whole slab (x E [-1, 1]).
Applying the first of (4.1) gives a, the temperature at the impurity, as the solution to the
transcendental equation

y2a' 3 - 2a1 + %o + y, = 0. (4.3)

A steady-state solution exists if (4.3) has a real positive zero (as a, is the temperature at the
impurity it must be real and positive).

To investigate the stability of the steady-state solution (4.2) and (4.3), a linear stability
analysis similar to Hill and Smyth [10] is performed. Let T(x) be the steady-state solution
(4.2) and look for perturbed solutions of the form

T(x, t) = Ts(x) + eu(x) eA , (4.4)

where is a small parameter, A is the growth or decay rate of the perturbation and u(x) is to
be determined. At O(e)

uxx -Au = -uy3y 2TS3-185(x), u(-1) = 0, (4.5)

is obtained, with the solution being

u = AX/ sinhNV(1 - xJ) , (4.6)

where A is a constant and A must satisfy the equation

/ = 3v2a 3- tanhVXA. (4.7)

For the temperature profile T(x) to be stable (4.7) must have no positive solutions. Hence,
the stability condition can be shown to be

y3 y2a'3-1 < 2. (4.8)



Microwave heating and impurities 389

4.2. Some special cases

In general, (4.3) needs to be solved numerically; however explicit solutions can be found in
some cases. Presented here are explicit solutions for the cases y3 = 1/2, y3 = 1 and y, = 2. In
particular, y3 = 1 and y3 = 2 are physically valid choices for many materials, see Hill and
Jennings [12]. These solutions illustrate the qualitative nature of the solution in the various
parameter regimes. In the appendix the explicit solutions to (4.3) presented here are found
graphically in order to gain some insight into the nature of the solutions. Also, additional
explicit solutions to (4.3) for the special cases y3 = 1/4, y, = 1/3, y3 = 3 and y3 = 4 are
presented in the appendix, due to their more complicated forms.

(a) 3 = 
In this case (4.3) has one positive real solution

1/2 Y2 + 2 + 8(yo + y3)
al - 4 (4.9)

The steady-state temperature profile ((4.2) with a, given by (4.9)) is stable for all parameter
values. Hence, in this case, heat absorption in the material is always balanced by heat loss
through the boundaries.

(b) y3 = 1
In this case, (4.3) has one real positive solution a, = (yo + y1 )/(2 - y2) if y2 <2 and none
otherwise. The steady-state temperature profile ((4.2) with a, given above) is the same as the
long-time limit of (3.11). The stability condition (4.8) becomes y2 <2, which confirms the
stability result obtained in Section 3. Hence, for y2 <2 heat absorption in the material is
always balanced by heat loss through the boundaries, while for y2 - 2 a balance is not
possible, hence a hot-spot occurs.

(C) 3 = 2

In this case (4.3) has the two real positive solutions

1 l2(' + )aI - , (4.10)
32

if

'2(Yo + y) < 1. (4.11)

The stability condition (4.8) indicates that of the two steady-state temperature profiles ((4.2)
with a, given by (4.10)), the profile of higher temperature is unstable while the profile of
lower temperature is stable. The limiting steady-state temperature profile, below which all
the stable steady-state temperature profiles lie, occurs when the two steady-state tempera-
ture profiles coalesce (y2 (y0 + y1) = 1). No steady-state temperature profiles exist if the
parameters lie outside the region (4.11) (so hot-spots occur). Figure 2 shows the two
steady-state temperature profiles (4.2) (with a, given by (4.11)) and thermal absorptivity
y = 0.5 + (0.5 + 0.95T 2 )8(x) and the numerical solution (6.2) (-). The comparison
between the lower (stable) temperature profile and the numerical solution is excellent. The
higher temperature profile is unstable. Hill and Smyth [10] also find a similar pattern with
their two temperature profiles, the one of higher temperature being unstable, while the one
of lower temperature being stable.
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Fig. 2. Temperature T versus x for y = 0.5 + (0.5 + 0.95T2)8(x). Compared are the two steady-state temperature
profiles ((4.2) with (4.11)) and the numerical solution (6.2) ( ).

In the appendix, stability conditions (the region of parameter space for which stable
steady-state solutions exist) are derived explicitly for the special cases 3 = 3 and 4. In
addition, a stability condition for arbitrary 3 > 1 is found. For y, > 1, steady-state solutions
occur in the region of parameter space (A.11) while outside this region hot-spots result
(thermal runaway occurs). For y3 < 1, the stability condition (4.8) is always satisfied (which
can be easily shown by rearranging (4.3)), hence only steady-state solutions occur and
hot-spots are not possible. For y3 = 1 the results of Section 3 show that steady-state solutions
occur for y2 < 2 while for y2 2 hot-spots occur (linearly-increasing solutions and exponen-
tially-increasing solutions are both possible).

5. Steady-state solutions with a decaying electric-field amplitude

In Sections 3 and 4 steady-state solutions have been obtained by considering simple models
of heat absorption and diffusion whilst ignoring the decay of the electric-field amplitude.
Smyth [11] and Hill and Pincombe [14] both include the effect of decaying electric-field
amplitude in their models by assuming the electrical conductivity is constant (hence the
electric-field amplitude undergoes exponential decay as it propagates from the incident
boundary). Here the form (2.8) is used for the electric-field amplitude thus including both
the decay of the electric-field amplitude as it propagates from the incident boundary and the
interaction of the amplitude with the temperature in the model.

The forced heat equation (2.10) is considered subject to the jump condition (2.11) and
initial and boundary conditions (2.12). To find steady-state solutions take T, = 0, integrate,
apply the jump condition (2.11) and the initial and boundary conditions (2.12) to obtain
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T = -- (1 - e- "aY(x+)) + c(x + 1), x < 0
a o

e-~~~~~~~'(gt )'o~~~~~) ~(5.1)-
a

(g +
y

)

T 2= (e-ao _ e-a ) + c 2 (X - 1), x > O,
a Yo

where the constants cl and c2 are given by

e-~ g
1 2a2 y( (eO -_ 1)(e_-(g+o) + 1) 2 (1 - eag) + e o(1 + eg),
c 1 =o g° 2(5.2)

C2=2a 2y0 O (e -e °- 1)(e- a ( g+ °o) + 1) + 2a (1 - e- ) - 4 e (1 + e-"g) ,

and g = y, + y2aY3. The temperature at the impurity, al, is the solution to the transcendental
equation

1 1 e - °
2 (1- e-"O) + 2 2 (e-o - 1)(e"(g+O) + 1)- 2 (1 -e )

+ g eao( + e- g) = a . (5.3)

In the limit a ---> O (where there is a no decay of the electric-field amplitude) (5.1) and (5.2)
become the solution (4.2) and (4.3) as required. The temperature profile (5.1) is not
symmetric like the temperature profiles found in Sections 3 and 4. This is because the
electric-field amplitude decays exponentially (in addition the amplitude is reduced by a
factor of e-ag at the impurity) away from the incident boundary x = -1. Hence, less heat is
absorbed in the region x >0 than in the region x <0 resulting in a non-symmetric
temperature profile. By performing a stability analysis similar to that in Section 4.1 the
stability condition for the profile (5.1) is found to be

y3 y2 a2-' e-O(1 + e-g) < 4 , (5.4)

with a given by (5.3). In the limit a--> (5.4) becomes the stability condition (4.8) as
required.

For the case of y3 = 1 an explicit stability condition can be found, as in Section 4. In this
case, as the temperature profile becomes marginally stable the temperature becomes large
(a, --> o). Hence, let e - g = 0 in (5.3) to obtain

2 - 2(1 + ayo) e- "ao + a2y 0 y1 e- "aO
aI - , 2 ---> 4 e"YO , (5.5)

a 27o( 4 - 72 e-" )

as the temperature at the impurity. Hence the temperature profile is positive and stable if

Y2 < 4 eO . (5.6)

As a increases the bound on 72 such that a stable steady-state temperature profile exists also
increases; this is because large a corresponds to a large decay in the electric-field amplitude,
which in turn leads to less heat absorption. In the limit a-->0 (5.6) the bound for stable
steady-state solutions (72 < 4) is different from that found for materials with linear thermal
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absorptivity and constant electric-field amplitude (cf. Y2 < 2 from Section 4). The limits are
different because the limiting stable temperature profile ((5.5) in the limit y2-->4e " ° )

becomes unbounded (hence a--> co). This means e-g--> 0 for any finite a whereas in Section
4 it is assumed that a = 0 (hence e- "g = 1). Physically, in Section 4 it is assumed that the
electric-field amplitude is constant throughout the slab, while here, in the limit a-- 0, the
electric-field amplitude is constant in the region x < 0 and zero in the region x > 0 (due to the
large temperature at the impurity). Hence, the bound on y2 is twice as large as that found in
Section 4.

Figure 3 shows stable steady-state temperature profiles (5.1) for thermal absorptivity
y =5+(2+1.8T)(x) with a =0.05, 0.1, 0.2 and 0.4. The case a =0 (not shown)
corresponds to zero electrical conductivity (hence there is no decay of the electric-field
amplitude) and the temperature profile is symmetric with a maximum temperature T = 35 at
the impurity. As a increases the decay of the electric-field amplitude is increased, hence the
heat absorption is less, which in turn lowers the steady-state temperature profiles. In
addition, the temperature profiles become less nearly symmetric as a increases and if the
decay of the electric-field amplitude is high enough the temperature peak occurs before the
impurity (see the a = 0.4 curve).

Figure 4 shows the temperature T versus x for a = 1.5, y = 1 + (1 + 0.6T 2)8(x) and t = 10.
Shown is the numerical solution (6.2) ( ) and the steady-state temperature profile (5.1).
There is an excellent comparison between the curves. Because the conductivity is large
(a = 1.5) the temperature profile is unsymmetric with the temperature higher in the region
x <0 than in the region x >0 (due to the decay of the electric-field amplitude from the
boundary at x = -1). The temperature profile in the region x > 0 is approximately linear; as
almost no heat absorption occurs there (the electric-field amplitude is very small in this
region; it is effectively damped by the high temperature at the impurity), all the heating
occurs via heat diffusion from the impurity at x = 0. For this choice of thermal absorptivity,
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Fig. 3. Temperature T versus x for y =5 + (2 + 1.8T)(x) and a = 0.05, 0.1, 0.2 and 0.4. Shown are the
steady-state temperature profiles (5.1).
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Fig. 4. Temperature T versus x for a = 1.5, t = 10 and y = 1 + (1 + 0.6T2 )8(x). Compared are the steady-state
temperature profile (5.1) and the numerical solution (6.2) ( ).

y, thermal runaway would occur if the electric-field amplitude was constant (as y2(y0 + y1) =
1.2 > 1). With a = 1.5 however, a steady-state temperature profile occurs due to the lowered
heat absorption. This confirms the results of Smyth [11] who reports that non-zero electrical
conductivity can stop hot-spots from occurring.

6. Numerical solutions

In order to verify the accuracy of the steady-state solutions derived in the previous sections
and to model situations for which analytical solutions are difficult to derive (such as a slab
with multiple impurities) a numerical scheme for the forced heat equation (2.10) subject to
the jump condition (2.11) and the initial and boundary conditions (2.12) is developed. The
solution at time t is

T(p,q)=T(-l+pAx,qAt), p=O,1l,...,n, (6.1)

where q = t/At, and n = 2/Ax. The scheme for calculating the solution at time t = (q + 1) At
is

- T(p + 1, q + 1) + (1 + s)T(p, q + 1)- T(p - 1, q + 1)

= T(p+ 1, q)+(1-s)T(p, q)+ 2 T(p-1, q)+ yo eP x At, p =1,...2-1,
-- 1

T(n2--1, q+l)-2T 2, q+l ) +T (2- +1,q+l -2 
-q +1)+(1+s)T(g) e +-(l(p+e-(,))qA

-- T(p + 1, q + 1) + (1 + s)T(p, q + 1)- 2 T(p - 1, q + 1)

393

a on
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= 2 T(p + 1, q) + (1 - s)T(p, q) + T(p - 1, q) + ,o e (
- ' '

+g(q))p Ax At,

n vAt n
P 1,n s() 2 and g(q)= y,+y2T3(2,q) (6.2)

The first and third of (6.2) is the discretisation of (2.10) in the regions x < 0 and x > 0,
respectively. The finite-difference scheme used is the Crank-Nicolson scheme, which is
unconditionally stable for the unforced heat equation ((6.2) with y = 0) and no numerical
evidence of instability has been found for the forced equation. The second of (6.2) is the
discretisation of the jump condition (2.11) which is applied at the impurity (x = 0). The
initial and boundary conditions are

T(j, 0) = T(O, j) = T(n, j) = 0, Vj, (6.3)

which state that initially the slab is of zero temperature and that the temperature at both
boundaries is fixed at zero.

Figure 5 shows the temperature T versus x for a = 0.1, y = 0.1 + (1 + 3T2 )(8(x + 1/3) +

8(x - 1/3)) and t = 0.7. This represents a finite slab with two impurities, one at x = -1/3 the
other at x = 1/3. Temperature peaks occur at both of the impurities. The temperature at
x = 1/3 is less than the temperature at x = -1/3 due to decay of the electric-field amplitude
in the slab (which results from the non-zero temperature-dependent electrical conductivity).
As time increases, the temperature peak at the impurity located at x = 1/3 fades as the
temperature rises at the impurity located at x = -1/3 (where thermal runaway occurs). This
is because the initial hot-spot reduces the electric-field amplitude in the region x> -1/3.
Hence, thermal runaway occurs at the impurity closest to the boundary at which the
microwaves are incident; it damps out the microwave radiation in the rest of the slab.
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Fig. 5. Temperature T versus x for a = 0.1, t = 0.7 and y = 0.1 + (1 + 3T2 )(8(x + 1/3) + 8(x - 1/3)). Shown is the
numerical solution (6.2).
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7. Conclusion

The microwave heating of a finite one-dimensional slab is considered with an impurity
located at its centre. This impurity has temperature-dependent thermal absorptivity, hence a
hot-spot can occur in the slab (due to thermal runaway). As cooling occurs at the boundaries
(a fixed-temperature boundary condition is applied) a steady-state temperature profile is also
possible, dependent on the specific values of the material properties. Steady-state solutions
are found for linear and non-linear thermal -absorptivity and for constant and decaying
electric-field amplitude. The region of parameter space in which stable steady-state solutions
occur (in the rest of the parameter space hot-spots occur) are also found for some special
cases.

When the dependency on temperature of the heat absorption is less than linear (y3 < 1)
then a hot-spot can never occur as there will always be a balance between heat absorption
and heat loss through the boundaries leading to a steady-state solution. For (y3

> 1) both
hot-spots and steady-state solutions are possible, depending on the other parameter values.
The parameter regions in which table steady-state solutions occur are given explicitly for
linear, quadratic, cubic and quartic dependencies (see Section 4 and the appendix). In
addition, a stability condition for arbitrary 3' > 1 is found. Decaying electric-field amplitude
decreases (but does not eliminate) the possibility of hot-spots, due to less heat being
absorbed in the material.

This study shows that in real applications of microwave technology it is important to know
how the dielectric properties of the material being heated vary with temperature. Once these
properties have been found experimentally (normally the electrical permittivity and the loss
tangent are tabulated, see Von Hippel [15]) then the functional form of the thermal
absorptivity, y, can be found (see Hill and Jennings [12]). This then allows the results of
Sections 4 and 5 (after suitable scalings) to determine if a hot-spot is likely to occur.

Extensions to this work could involve the study of two- and three-dimensional bodies and
the use of cylindrical and spherical co-ordinates to investigate the microwave heating of more
realistic material geometries such as plates, rods and pellets. In addition, materials with
temperature-dependent properties throughout, rather than just at the impurity could be
considered; of particular interest would be the interaction of the temperature with the
electric-field amplitude in this case.

Appendix

In Section 4 steady-state solutions are obtained for a material with non-linear thermal
absorptivity and constant electric-field amplitude throughout. The temperature at the
impurity is found by solving for the real positive roots of the transcendental equation y(x) = 0
where

y(x) = y2x 3 - 2x + 0 + y1 (A.1)

In this appendix, the explicit solutions of (A.1), found in Section 4.2 for the special cases
73 = 1/2, y3 = 1 and y3 = 2 are found graphically in order to gain some additional insight into
the nature of the solutions. Additional explicit solutions to (A.1), for the special cases
73 = 1/4, 3 = 1/3, y3 = 3 and y3 = 4 are also presented. Lastly, the graphical method used
above is generalised to obtain the stability condition for arbitrary y3 > 1.
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1. The graphical solutions

In Section 4.2 the temperature at the impurity is found by solving (A. 1) for the special cases
T3 = 1/2, y3 = 1 and y3 = 2. Here, (A.1) is solved graphically for these special cases, in order
to gain some insight into the nature of the solutions. Figure 6 shows y(x) versus x for y3 = 1/2
and yo = y, = 1. The curves are drawn for 2 = 0.01, 0.5 and 1. Also shown is y = 0 (---).
Hence, the intersection of the solid and dashed lines represents the solutions of (A. 1) (given
by (4.9) for y3 = 1/2). For 2 = 0.01 the curve is approximately a straight line with the root
occurring at x 1. As 2 increases the root increases in magnitude. It can be seen that the
y-intercept is always positive (as y0 +1y, >0) and y e-- as x -co (as the term -2x
dominates y2xl /2 in this limit), hence there exists a real positive root of (A.1) for all
parameter values (it is easy to show that y' < 0 for all x greater than the root, hence there is
only one real positive root). This is in agreement with Section 4.2(a) where the explicit
solution to (A.1) for y3 = 1/2 is presented.

Figure 7 shows y(x) versus x for y, = 2 and 7o = = 1. The curves are drawn for 72 = 0.4,
0.5 and 0.6. Also shown is y = 0 (---). Hence, the intersection of the solid and dashed lines
represents the solutions of (A.1) (given by (4.10) for 73 = 2). For 2 = 0.4 there are two real
positive roots, while for 2 = 0.5 these coalesce into one real positive root. As 2 is increased
further the parabolic curve is shifted in the positive y-direction with the result being no
positive real roots exist for the case 2 = 0.6. This is in agreement with Section 4.2(c) where
the explicit solutions to (A.1) for y3 = 2 are presented. By examining Fig. 7, the parameter
values for which the two real positive roots coalesce (and hence the stability condition) for a
material with a quadratic thermal absorptivity can be found. Take both
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Fig. 6. y(x) versus x for y3 = 1/2 and y, = y, = 1. The curves are drawn for y, = 0.01, 0.5 and 1. Also shown is y = 0
(- -- ).
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X

Fig. 7. y(x) versus x for y, = 2 and y, = y, = 1. The curves are drawn for Y2 = 0.4, 0.5 and 0.6. Also shown is y = 0

y(x) = 2X
2 - 2X + Y + ' 1 = 0,

(A.2)
y'(x) = 2y2x - 2 = 0,

which simply state that the transcendental equation and its derivative are zero for the case
where the two roots coalesce (hence the root occurs at the turning point of the transcenden-
tal equation). Solving (A.2) gives the relation

3Y2(Y3' + y) = 1, (A.3)

which is precisely the relationship given by (4.10) for one real positive root to occur. In Fig.
7 the roots coalesce in the case 2(y, + y,) = 0.5(1 + 1) = 1 which satisfies (A.3). As the
temperature profile is unstable in this case (see (4.8)) the inequality corresponding to (A.3)
(see (4.11)) gives the stability condition for the heating of a material with a quadratic
thermal absorptivity.

For the case of linear thermal absorptivity (y3 = 1) the qualitative nature of the solution is
easily explained without the aid of a figure. The y-intercept of (A.1) is positive, hence for a
real positive root to exist, the slope of the line, y2 - 2, must be negative. This is true if y2 < 2
which is precisely the stability condition obtained in Section 4.2(b).

2. Additional explicit solutions

Here the explicit solutions obtained in Section 4.2 are supplemented by explicit solutions to
(4.3) for the special cases 3 = 1/4, y3 = 1/3, 3 = 3 and y3 = 4.



398 T.R. Marchant

(a) y3 = 1
In this case (4.3) has one positive real solution,

1/4 U1/ (2(u2 + 2(y, + y1 ))1 / 2 - U1 )
1 /2

al - 2 + (A.4)2

where u1 = (q + d1 /2 )1 /3 + (q - d/2)1 /3

and q = y2/8, p = -2 (3o + y 1)/
3 and d =q 2 -_p3.

(b) y3 = 
In this case (4.3) has one positive real solution,

a = (q + d1 ) (q- d) , for d 0 ,

a '3 =2(-6) cos('k), where cos(3)= qp 3 2 , ford<0. (A.5)

and p=y2 / 6 , q=(y0 +y 1 )/4 and d=q2 p3

(c) y3 = 3
In this case there are two real positive solutions

a1 = 2( 2 cos() , a, =-2(3) cos( + r/3) , (A.6)

where cos(30) = ( Yo/1)Y2 3 2

if 2(Yo + y1)
2 < 32/27. (A.7)

(d) y3 = 4
In this case there are two real positive solutions

Ull/2 (2(U2- 4( 3' 
- ' 1/2 1/2

a, = 2 2 (A.8)

where u = (q + d1/2 )1 /3 + (q - d1/2)1 /3

if 2(Y0
+ y) 3 < 27/16. (A.9)

The other parameters in (A.8) and (A.9) are given by q = 2/y22, 3p = 4 (y, + y)/y2 and
d = q2 _p 3 . In cases (a) and (b) where y3 = 1/4 and y3 = 1/3, respectively, the steady-state
solutions are qualitatively similar to the case y3 = 1/2. There is one steady-state solution
which is stable for all parameter values. Hence, heat absorption is always balanced by heat
loss through the boundaries. In cases (c) and (d) where y3 = 3 and y3 = 4, respectively, the
steady-state solutions are qualitatively similar to the case y3 = 2. There are two steady-state
solutions; the lower temperature profile is stable ((4.2) with a1 given by the second of (A.6)
and (A.8), respectively) while the higher temperature profile is unstable ((4.2) with a given
by the first of (A.6) and (A.8), respectively). In the case where the two steady-state
temperature profiles coalesce (3Y2( 0 + y1)2 = 32/27 and y2('Y0 + Y1) 3 = 27/16, respectively) the
limiting steady-state temperature profile is unstable. There are no steady-state solutions
outside the regions of parameter space (A.7) and (A.9) (hence hot-spots occur).
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3. The stability condition for arbitrary y3

The method for finding when the two real positive zeros of (A.1) coalesce for quadratic
thermal absorptivity (and thus the stability condition) can be generalised to all y3 > 1.
Consider (A.1) and its derivative

y'(x) = y3y2X 3 -1 - 2 = 0 0. (A.10)

Note the correspondence between (A. 10) and the stability condition (4.8). Solving (A.1) and
(A.10) gives the stability condition

72(+ y)y
3 -

l < (i)l( 3 1)3 , y>. (A.11)2 0 1) (73) ( 3 ) Y3 (A.11)

The temperature at the impurity for the limiting temperature profile (which occurs when the
two steady-state solutions coalesce) is given by

_..2 \ 1/(3-1)
a - - 1,~~~~~~~ Y3 (A.12)

Note that for y3 < 1 there is no limiting temperature profile as a stable steady-state solution
exists for all parameter values (the explanation of Fig. 6 proves that one steady-state solution
always exists while stability is easily shown by rearranging (4.3)). Substituting y3 = 2, 3, and
4 into (A.11) gives the stability conditions (4.11), (A.7) and (A.9), respectively, as required.
While substituting y3 = 2, 3, and 4 into (A.12) gives the appropriate expressions for the
temperature at the impurity for the limiting temperature profile (see (4.10), (A.6) and (A.8),
respectively).

As y3 becomes large (y3 -> 00), the temperature at the impurity for the limiting temperature
profile a--->(yO + y)/2. As 73- -->0 the heat absorbed due to the temperature-dependent
thermal absorptivity at the impurity for this limiting temperature profile increases if yo + y 
2. This is because the temperature at the impurity is greater than unity. Hence the bound on
y2, given by (A.11), for a stable steady-state solution to exist decreases to zero as y73 -, .
Conversely, as 73 -> the heat absorbed due to the temperature-dependent thermal
absorptivity at the impurity for the limiting temperature profile decreases if y, + y1 < 2. This
is because the temperature at the impurity is less than unity. Hence, the bound on Y2, given
by (A.11), for a stable steady-state solution to exist increases without limit as 73--,
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